Central Simple Poisson Algebras

نویسندگان

  • Yucai Su
  • Xiaoping Xu
چکیده

In this paper, we determine the isomorphism classes of the central simple Poisson algebras introduced earlier by the second author. The Lie algebra structures of these Poisson algebras are in general not finitely-graded.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal Central Extension of Current Superalgebras

Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras  are very impo...

متن کامل

Generalized Witt Algebras and Generalized Poisson Algebras

It is well known that the Poisson Lie algebra is isomorphic to the Hamiltonian Lie algebra [1],[3],[13]. We show that the Poisson Lie algebra can be embedded properly in the special type Lie algebra [13]. We also generalize the Hamitonian Lie algebra using exponential functions, and we show that these Lie algebras are simple.

متن کامل

On Filippov Algebroids and Multiplicative Nambu–Poisson Structures

We discuss relations of linear Nambu-Poisson structures to Filippov algebras and define a Filippov algebroid – a generalization of a Lie algebroid. We also prove results describing multiplicative Nambu-Poisson structures on Lie groups. In particular, it is shown that simple Lie groups do not admit multiplicative Nambu-Poisson structures of order > 2.

متن کامل

DEFORMATIONS OF THE CLASSICAL W-ALGEBRAS ASSOCIATED TO Dn, E6 AND G2

The purpose of this paper is the computation of the Poisson brackets in the deformed W -algebras Wq(g), where g is of type Dn, E6 or G2. Let us first briefly recall some facts about two main descriptions of W -algebras. The first description is via the Drinfeld-Sokolov reduction. Let g be a simple Lie algebra, and n be its nilpotent subalgebra. Let M = μ(f)/LN , where μ : ĝ → Ln is the momentum...

متن کامل

Transverse Poisson Structures to Adjoint Orbits in Semi-simple Lie Algebras

We study the transverse Poisson structure to adjoint orbits in a complex semi-simple Lie algebra. The problem is first reduced to the case of nilpotent orbits. We prove then that in suitably chosen quasi-homogeneous coordinates the quasi-degree of the transverse Poisson structure is −2. In the particular case of subregular nilpotent orbits we show that the structure may be computed by means of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000